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Abstract

Previous studies of Internet traffic have shown that a very small percentage of flows consume most of the network

bandwidth. It is important to understand the characteristics of such flows for traffic monitoring and modeling purposes.

Several prior researchers have characterized such flows using different classification schemes: by size as elephant and

mice; by duration as tortoise and dragonfly; and by burstiness as alpha and beta traffic. However, it is not clear

how these different definitions of flows are related to each other. In this work, using data recorded from two different

operational networks, we study these ‘‘heavy-hitter’’ flows in four different dimensions, namely size, duration, rate and

burstiness, and examine how they are correlated. This paper makes three contributions: first, we systematically charac-

terize prior definitions for the properties of such heavy-hitter traffic. Second, based on our datasets, we observe that

there are strong correlations between some combinations of size, rate and burstiness. Finally, we provide a plausible

explanation for the observed correlations. We show that these correlations could be explained by transport and appli-

cation-level protocol mechanisms.
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1. Introduction

Recent studies have shown that a very small

percentage of flows carry the majority of the bytes
[26,10,2]. It is important to understand the proper-

ties of such traffic for traffic monitoring and
ed.
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modeling purposes. In this paper, we refer to such

flows as ‘‘heavy-hitter’’ flows. By studying these

heavy-hitter flows, one can understand a large

portion of the overall traffic. Potential applica-

tions for employing such knowledge include
anomaly and attack detection [15], scalable differ-

entiated services [20,5] usage-based pricing and

accounting [8,27]. However, while important and

several efforts have looked at characterizations of

heavy-hitters by size [30,6,10,2,33,21], duration

[4], and burstiness [25], there has been no system-

atic effort to study how these characteristics

interact.
Several researchers previously have character-

ized Internet flows using different classification

schemes: size (mice and elephant) [30,6,10,

2,33,21], duration (dragonfly and tortoise) [4] and

burstiness (alpha and beta traffic) [25]. While each

of these studies provides different insights into

understanding the characteristics of Internet flows,

it is not clear how they relate to each other. For
example, are most elephant flows long-lived?

(The answer depends on what types of links are

used to transfer large file.) On the other hand,

are most long-lived flows due to the download of

large files? Various applications can benefit from

understanding the relationship between different

characterizations of heavy-hitter flows. For in-

stance, understanding of the relationship between
long-lived and large-size flows might help one eval-

uate different pricing schemes (e.g. usage-based vs.

duration-based). Knowledge of the correlation be-

tween high volume and bursty traffic could shed

some insight into distinguishing large file transfer

from malicious traffic.

Previously, Zhang et al. [32] showed that there

is a strong correlation between flow size and rate.
They hypothesized that users might have chosen

the size of their transfer strongly based on the

available bandwidth. In this work, based on data-

sets from two different sources, we propose an-

other plausible explanation for the strong

correlation between flow size and rate. While user

behavior might have an effect on flows with a lar-

ger size, our data suggests that the strong correla-
tion between size and rate might be better

explained by protocol reasons for small- or med-

ium-size flows. Our observation has some impor-
tant implications for application and protocol

design. For example, we show that, for small/med-

ium flows, the strong correlation between rate and

size is likely a pervasive artifact due to different

timeout mechanisms. Such an observation might
argue for the use of a larger packet size or a larger

initial window to improve TCP performance (so

that more data can be sent in one RTT before

the timeout occurs).

The contribution of this paper is threefold.

First, to our knowledge, our work is the first to

systematically characterize the properties of these

heavy-hitter flows (Section 5). Second, based on
data collected from two different sources, we ob-

serve that there are strong correlations between

some combinations of size, rate and burstiness.

Finally, we provide a plausible explanation for

the observed correlations. We show that these

correlations can be explained by transport

and application-level protocol mechanisms

(Section 6).
Note that, in this study, due to time constraints,

the results of this paper are based on only a limited

set of traces. However, since our data are recorded

from two different levels of operational networks

(one regional network and one backbone link),

we believe that our work still provides some useful

insights and a first step toward understanding the

relationship between different characterizations of
Internet flows.
2. Flow characterization

We define a flow as an unidirectional series of IP

packets with same source and destination ad-

dresses, port numbers and protocol number. Sim-
ilar to previous studies [9,32], we use a 60 s

timeout to decide that if an idle flow has termi-

nated. In this work, we characterize and study

Internet flows in four different dimensions, namely

size, duration, rate and burstiness. Size is the total

number of bytes sent in a flow (including headers).

Duration is the time elapsed between the first

packet and the last packet of a flow. Rate is size
divided by duration. However, to the best of our

knowledge, currently there is no consensus on

definitions for burstiness. While all other
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characteristics of a flow are defined over the entire

flow duration, burstiness is a property of part of

the flow. Previous work on traffic self-similarity

has identified this problem in characterizing burs-

tiness at some timescale [14]. We propose three
definitions of burstiness which are described

shortly. We ignore very short flows, particularly

flows with a duration of less than 100 ms, based

on similar reasons to prior work [32].

Previous studies showed that distributions of

flow sizes in the Internet traffic have a long tail.

In this work, we focus on flows that are in the tail

of the distribution and term them as heavy-hitter
flows. Heavy-hitter flows typically account for

only a small percentage of total flows but consume

most of the network bandwidth. Specifically, we

define and classify flows in four different dimen-

sions: size (elephant and mice), duration (tortoise

and dragonfly), rate (cheetah and snail) and burs-

tiness (porcupine and stingray). We use a thresh-

old-based scheme to define heavy-hitter flows in
each category. We compute the mean plus three

standard deviations of the sampled data to set

the particular threshold.1 For example, an ele-

phant flow is defined as a flow with a size larger

than the mean plus three standard deviations of

all flows.

Size (s): We define elephants as flows with a size

larger than or x kB and mice as flows with a size
less than or equal to x kB. For readability, we

use the notation s to stand for size for the rest of

the paper. For example, flows means the size of a

flow. Other notations (d, r and b) are used for

duration, rate and burstiness respectively.

Duration (d): We define tortoises as flows with a

duration longer than y min and dragonflies

as flows with a duration less than or equal to
y min.
1 We are in the process of looking at the results using media

instead of mean, since mean might not be a good metric f

heavy-tailed distributions. In addition, some distributions ma

not have well-defined second moments, or even first moment

Hence, we also look at using percentiles (e.g. the largest 1%

all flows) as breakpoints, as described later in Section 7.
n

or

y

s.

of
Rate (r): we define cheetahs2 as flows with a

rate greater than z kB/s and snails as flows with a

rate less than or equal to z kB/s.

Burstiness (b): In this work, three different

definitions of burstiness are proposed. Our first
definition of burstiness is based on the variation

of traffic at a timescale of T. Given a flow, we first

divide it into bins bi of duration T. Assuming that

si is the number of bytes sent in bi, variance bursti-

ness of that flow is then defined as the standard

deviation of all si.

The problem of using such a definition is that

the result typically depends on the choice of T.
In particular, a larger T tends to bias against

small-size flows which have less data to sent in

each T. However, small-size flows can still be bur-

sty by sending most of their data in a very short

period. Another weakness of this definition is the

relationship between T and the flow duration.

For flows shorter than T, variance is undefined,

and boundary effects add error for flows shorter
than 3–5T. In addition, this definition does not

consider network conditions, leading us to explore

to alternative definitions.

Second, we consider RTT burstiness. We first

define burst size as the number of bytes sent in

each RTT of a flow. We then characterize RTT

burstiness as the product of the mean burst size

and the average RTT. That is,

bursts ¼
def bytes sent in each RTT ;

burstiness ¼def meanðburstsÞ � RTT avg.

Such a definition avoids the drawback of defining

burstiness based on one particular fixed time scale.

However, in practice, it is non-trivial to measure

the RTTs of an unidirectional flow.
Our third definition, train burstiness, defines a

burst as a train of packets with a packet inter-arri-

val time less than a threshold t. Burst size is the

number of bytes sent during each burst. Burst

duration is the time elapsed between the first pack-

et and the last packet of a burst. Burst rate is the
2 We borrow the terms ‘‘elephant’’, ‘‘mice’’, ‘‘tortoise’’ and

‘‘dragonfly’’ from previous work. We use the term ‘‘cheetah’’

for its swiftness and ‘‘porcupine’’ for its sharp bristles which are

visually similar to the shape of the bursts in the traffic.
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burst size divided by burst duration, excluding any

one-packet train. Inter-burst is the inter-arrival

time between two bursts. Train burstiness is then

defined as the product of mean burst rate and

mean inter-burst. In other words,

burst ¼def packets with inter-arrival time < t;

bursts ¼def bytes sent in each burst;

burstd ¼
def duration of a burst;

burstr ¼
def bursts

burstd
;

bursti ¼
def gap between bursts;

burstiness ¼def meanðburstrÞ � meanðburstiÞ.
We evaluate both variance burstiness and train

burstiness and find that the results are qualitatively

similar. For brevity, in this paper we present only

the results based on train burstiness. We define
porcupines as flows with burstiness greater than

m kB and stingrays as flows with burstiness less

than or equal to m kB.

In this paper, we present the results based on

the analysis using x = 152 kB, y = 12 min, z =

101 kB/s, m = 48.7 MB and t = 1 ms. We calculate

the mean plus three standard deviations in each

category to obtain these values (i.e. 152 kB,
12 min, etc.). In Section 7, we look at three other

ways of defining heavy-hitters. We first define hea-

vy-hitters as the top 1% of all flows. Second, we set

the threshold as the cutoff point in the heavy-tailed

distribution. We select the cutoff point by employ-

ing the aest test as proposed in [7]. Finally, we de-

fine heavy-hitters as the largest flows that together

contribute 50% or more of the aggregated traffic.
We find that the results do not change significantly

in all three cases.
3. Related work

Prior work has classified Internet flows based on

several different schemes: size (elephant and mice),
duration (tortoise and dragonfly) and burstiness

(alpha and beta traffic). In our work, we study

how these classifications relate to each other.

Additionally, previous studies showed that there

is a strong correlation between size and rate of
Internet flows. They hypothesized that such a

correlation between size and rate might be due to

user behavior. In this paper, based on the data we

collected, we demonstrate that the correlation be-

tween size and rate for small- or medium-size flows
could be better explained by protocol reasons.

3.1. Elephant and mice

While the sizes of most Internet flows are small,

the majority of packets and bytes of Internet traffic

are carried by a small percentage of large flows.

This property persists across several levels of
aggregation [30,6,10,2,33], and is known as the

‘‘elephant and mice phenomenon’’.

Several previous studies tried to identify

elephant flows. Estan and Varghese [9] defined

elephant as any flow whose rate that is larger than

1% of the link utilization. Papagiannaki et al. [21]

proposed a more sophisticated two-feature classifi-

cation scheme to identify elephant flows. Accord-
ing to their definition, flows are characterized as

‘‘elephant’’ based on both their volume and their

persistence in time. Note that the definition of

‘‘flow’’ in Estan�s work is similar to ours (as de-

scribed in Section 2), but the flow granularity cho-

sen by Papagiannaki et al. is at the network prefix

level.

Our definition of elephant is closer to Estan�s
work. We define elephant flows as flows with a size

larger than the mean plus three standard devia-

tions of the sampled data. Specifically,

Prior: elephant := flows > 1% of link bandwidth.

Ours: elephant := flows > (mean + 3 * std) of all

flows.

Note that our work does not focus on how to

choose the criterion for defining an elephant.

Instead, given a fixed criterion, we focus on the

correlation between elephant flows and other

dimensions (i.e. duration, speed and burstiness).

However, to understand if different choices of the

threshold would affect our results, we also look

at the effects from using different criteria in
Section 7. We find that our results do not signifi-

cantly change due to different choices of the

threshold.
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3.2. Tortoise and dragonfly

Brownlee and Claffy [4] studied Internet flows

from a different aspect. They classified Internet

flows based on their durations. They found that
45% of flows have a duration of less than 2 s (drag-

onflies), and less than two percents of the flows last

longer than 15 min and carry more than 50% of

the total bytes on a link (tortoises).

Our definition of long-lived flows are flows with

a duration larger than the mean plus three stan-

dard deviations of the sampled data. That is,

Prior: tortoise := flowd > 15 min.

Ours: tortoise := flowd > (mean + 3 * std) of all

flows.

Additionally, we look at the other properties

of these long-lived flows (i.e. size, rate and

burstiness).

3.3. Alpha and beta traffic

Sarvotham et al. [25] showed that traffic bursts

typically arise from just a few high-volume connec-

tions that dominate all the others. They named such

flows as alpha traffic and define them as any flow

whose peak rate exceeds certain threshold.

Specifically, they identified the connection(s) that
transmits the largest number of bytes in each

500 ms time bin and labeled it as an alpha flow if

its rate exceeds the mean (Aggl) plus three standard

deviations (Aggstd) of the aggregate traffic. They de-

fined the remaining flows as beta traffic and found

that the beta component of the aggregate traffic

carries the same fractal scaling exponent as the

aggregate traffic.
In this paper, we propose three different defini-

tions of burstiness, namely variance burstiness,

RTT burstiness, train burstiness, as described in

Section 2. We have evaluated both variance burs-

tiness and train burstiness and found that the re-

sults are qualitatively similar. Our definition of

bursty flows are flows with a burstiness larger than

the mean plus three standard deviations of the
sampled data. In other words,

Prior: alpha := burstpeak > Aggl + 3 * Aggstd.
Ours: porcupine := flowb > (mean + 3 * std) of

all flows.

Surprisingly, as shown later in Section 5, our

results are consistent with the observation from
Sarvotham�s work (where they found that most

bursty flows are due to transfer of large files

over fast links) even when we define burstiness

differently.

3.4. Flow analysis

Previously Zhang et al. [32] looked at flows
with a duration longer than 30 s and found that

there is a strong correlation between flow size and

rate. They hypothesized that, for large flows, the

strong correlation between size and rate might be

due to user behavior. In other words, users tend

to choose the size of their transfer based on

the available bandwidth. While user behavior

might introduce some correlation between rate
and size, we find that the strong correlation be-

tween size and rate for small- or medium-size flows

might be better explained by protocol reasons.

Additionally, we show that using flow duration as

a metric to separate large- and small-size flows

could be misleading. As described later in Section

6.1, our data suggests that most of the flows longer

than 30 s actually only have a medium or small size.

3.5. Multi-dimensional traffic characterization

Estan et al. [8] proposed a traffic characteriza-

tion scheme that automatically groups traffic into

minimal clusters of conspicuous consumption.

They analyzed traffic along multiple different

dimensions (source address, destination address,
protocol, source port and destination port) at

once, and then compressed the results into a con-

cise report. While our work is also based on a

multi-dimensional classification scheme, we focus

on understanding the relationship between differ-

ent dimensions. Additionally, we look at a differ-

ent multi-dimensional space (size, duration, rate

and burstiness). One possible extension of our
work is to apply similar technique like theirs on

the multi-dimensional space we study to detect

interesting/important traffic clusters.
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4. Traces

The datasets we utilize in this study are from

two different sources. The first set of traces were

collected at Los Nettos [19], a regional area net-
work in Los Angeles. Los Nettos has peering rela-

tionships with several ISPs and the LA-

Metropolitan Area Exchange, and serves a diverse

clientele that includes academic institutes and cor-

porations around the Los Angeles area. The sec-

ond set of traces were from the NLANR site

[18]. The NLANR traces were previously collected

on an Abilene OC48 backbone link that lies be-
Table 1

Characteristics of packet traces

Trace Date Duration # of packets (million

Los Nettos April 2003 2 h 168

NLANR August 2002 20 min 42
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Fig. 1. The relationship between different characterizations of heavy-h

rate (c) and flow burstiness (d).
tween Indianapolis and Cleveland. The character-

istics of the traces are summarized in Table 1.

Although the duration of NLANR trace is much

shorter than Los Nettos trace, its mean flow size

is significantly larger. Because the short duration
of NLANR trace will inevitably introduce a bias

against long-lived flows, our results are mainly

based on Los Nettos traces. We utilize NLANR

traces for comparison and validation. Note that

Los Nettos data has a larger percentage of UDP

traffic due to the presence of a DNS root name ser-

ver. Fig. 1 shows the distributions of different flow

metrics in Los Nettos data. The scaling exponents
) # of flows (million) TCP (%) UDP (%)
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itter flows. Distributions of flow size (a), flow duration (b), flow
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a for distributions of flow size, duration, rate and

burstiness are 1.2, 1.8, 1.3 and 1.5 respectively.
5. Relationships between different characterizations
of heavy-hitter flows

In this section, based on the data we collected,

we present some properties of different character-

izations of heavy-hitter flows.

As shown in Table 2, although accounting for

only a very small percentage of total flows, these

heavy-hitter flows carry a large portion of network
traffic. In particular, porcupine flows carry almost

as much traffic as tortoises although they account

for less flows.
Table 2

Fraction of Internet traffic for each category in terms of bytes

and number of flows

Category % of no. of bytes % of no. of flows

Los Nettos

Elephant 71 1

Tortoise 43 4

Cheetah 16 2

Porcupine 39 0.9

NLANR

Elephant 82 4

Tortoise 45 4

Cheetah 36 2

Porcupine 40 1

Table 3

Relation between elephant, tortoise, cheetah and porcupine

flows

Expect Given

Elephant Tortoise Cheetah Porcupine

Los Nettos

Elephant – 6% 3% 68%

Tortoise 20% – 0.007% 8%

Cheetah 7% 0.004% – 3%

Porcupine 19% 1% 4% –

NLANR

Elephant – 29% 72% 75%

Tortoise 17% – 12% 9%

Cheetah 39% 8% – 80%

Porcupine 28% 5% 57% –
Table 3 shows relationships between different

characterizations of heavy-hitter flows. The first

column in the upper table indicates that, in Los

Nettos traces, ‘‘20% of elephants are also tortoises,

7% of elephants are cheetahs, and 19% of ele-
phants are porcupines’’. The last column shows

that about 68% of porcupines are also elephants,

which indicates that bursty flows are strongly cor-

related with large-size flows. The third column

shows that cheetah flows are less correlated with

other categories in Los Nettos traces when

comparing against NLANR traces. As described

in Section 4, Los Nettos data has a larger percent-
age of DNS traffic due to the presence of a root

name server. A large portion (about 60%) of chee-

tah flows in Los Nettos data are comprised of

small bursts of DNS traffic. The mean size of chee-

tah flows consequently is significantly larger in

NLANR data than in Los Nettos traces. As a

result, there are more cheetah flows that are also

elephants in NLANR traces than in Los Nettos
data.

Table 4 shows five of the most popular applica-

tions in each category of Los Nettos data. We

identify the applications based on their well-

known port numbers (e.g. port 80 for web traffic).

Note that this approach might introduce bias

against some applications such as P2P traffic

which commonly uses random port numbers to
avoid the blocking of firewall. Overall, web and

P2P applications account for most of Internet traf-

fic in terms of the number of bytes, which is consis-

tent with prior work [16]. In particular, web traffic

accounts for most of the fast and bursty traffic.

More than 50% of long-lived flows are DNS traf-

fic. (We classify any flow that uses port 53 as

DNS traffic, and do not distinguish zone transfers
from standard queries. A closer examination of

our traces, however, shows that most of these

long-lived flows are comprised of DNS zone trans-

fers.) Surprisingly, DNS traffic is also responsible

for significant portion of high-rate traffic. A closer

look at our traces shows that a large number of

DNS flows consist of burst of packets due to

repeated DNS queries originated from the same
host. Similar results were also reported in a

previous study of CAIDA [31]. Note that some

of elephant flows are contributed by telnet traffic.



Table 4

Top five applications in terms of total number of flows in different categories in Los Nettos trace

Rank Elephant Tortoise Cheetah Porcupine

1 web (67%) DNS (51%) web (53%) web (71%)

2 kazaa (5%) web (15%) DNS (28%) smtp (10%)

3 telnet (3.5%) telnet (9.1%) ftp (5%) ftp (6%)

4 gnutella (2%) ftp (5%) smtp (3.3%) nntp (2.1%)

5 nntp (2%) smtp (4.5%) WinMX (1.3%) pop (1.3%)
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Such an observation suggests that interactive

traffic like telnet could still consume significant

amount of network bandwidth due to its persis-

tence in time.

Fig. 1 shows the relationship between different

characterizations of flows in Los Nettos data.

The results for NLANR traces are similar. For

brevity, we do not show the same plots for
NLANR data here.

First, we look at the flow size distribution for

different classifications of flows, as shown in Fig.

1(a). One interesting insight that one can infer

from Fig. 1(a) is the origin of long-lived flows.

There are two possibilities for the cause of long-

lived flows. The first case is due to the user/appli-

cation behavior. For example, a long-live flow
might occur when an application repeatedly sends

some amount of traffic and then pauses for a long

period (such as periodic DNS updates or telnet).

Another possibility is the transfer of a big file over

slow links. Based on our traces, we find that the

former explanation is more plausible. As shown

in Fig. 1(a), only about 6% of tortoises are flows

with a size greater than 100 kB and around 80%
of tortoises are smaller than 10 kB, which does

not support the second case. Hence, we conjecture

that the majority of long-lived flows in our traces

are most likely due to application/protocol rea-

sons. Furthermore, about 70% of cheetah flows

are smaller than 10 kB, which indicates that a large

number of fast flows contain only a small burst of

packets (such as the bursty DNS queries described
previously). Finally, the distributions of porcupine

flows and elephant flows share some similarities,

which again suggests that they might have some

correlation.

Next, we look at the distribution of flow dura-

tions for different types of flows. As shown in

Fig. 1(b), more than 70% of Internet flows have
a duration of less than 10 s, which is consistent

with prior work [4] that reported that most Inter-

net flows are short-lived. More than 95% of chee-

tah flows are short (<1 s), which confirms that

most cheetah flows consist of just a small burst

of packets. About 50% of elephant flows have a

duration longer than 2 min and 20% of elephants

last longer than 15 min, which suggests that most
elephant flows are long-lived. Note that the last

10% of elephant flows have a similar duration,

which is due to the boundary effect of our

fixed-length traces. Finally, about 65% of porcu-

pine flows have a duration less than 10 s and

more than 95% of porcupines last less than

2 min. Since most porcupine flows are also ele-

phants, this observation suggests that most of
the bursty traffic might be due to the transfer of

large files over fast links. Note that our observa-

tion is consistent with prior work [25] even

though we define ‘‘bursty flow’’ differently (as

described in Section 3.3).

Fig. 1(c) shows the flow rate distribution for dif-

ferent types of flows. About 80% of porcupine

flows have a rate greater than 10 kB/s and 30%
of porcupines have a rate greater than 100 kB/s,

which suggests that most bursty flows are also fast.

Around 30% of elephant flows are faster than

10 kB/s and about 5% of elephants are faster than

100 kB/s, which implies that most elephant flows

are not fast. Lastly, we find that around 80% of

Internet flows have a rate less than 10 kB/s.

Finally we look at the distribution of flow burs-
tiness for different types of flows, as shown in Fig.

1(d). Based on our definition of burstiness, tor-

toises, elephants and most Internet flows are com-

paratively less bursty than porcupines and

cheetahs. Specifically, there are only around 5%

of elephant flows are burstier than 10 MB. More

than 80% of Internet flows and more than 90%



Table 5

Taxonomy of heavy-hitter traffic

Category Large-size Long-lived Fast Bursty

Elephant Y Y N N

Tortoise N Y N N

Cheetah N N Y Y

Porcupine Y N Y Y
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of tortoise flows are less bursty than 1 MB. More

than 80% of cheetah flows are burstier than

10 MB, although most cheetahs only consist of a

small number of packets.

Table 5 shows a taxonomy that characterizes

the ‘‘heavy-hitter’’ traffic. In summary, elephant
flows are long-lived, but neither fast nor bursty.

Tortoise traffic is slow and not bursty. Individual

tortoise flows in general do not use up a lot of net-

work bandwidth although aggregatively they con-

sume significant amount of bandwidth, as shown

previously in Table 2. Cheetah flows are typically

small but bursty. Finally, porcupine flows are

likely due to the download of big files over fast
links. These results obviously depend on our defi-

nitions of heavy-hitter traffic. We also look at

other ways of defining heavy-hitters, as later

described in Section 7, and find that the results

do not change significantly.
6. Origin of correlation between different flow
statistics

Zhang et al. [32] showed that there is a strong

correlation between flow rate and size. Motivated

by their work, in this paper we study the physical

explanation for the observed phenomena of corre-
Table 6

Correlation between different categories

Metrics Correlation coefficient

Los Nettos NLANR

(rate,burstiness) 0.83 0.82

(size,rate) 0.81 0.87

(size,burstiness) 0.80 0.77

(size,duration) 0.21 0.23

(duration,burstiness) �0.17 �0.07

(duration,rate) �0.32 �0.04
lations between different flow statistics. Table 6

shows six pairs of correlations: rate and size, rate

and duration, rate and burstiness, size and dura-

tion, size and burstiness, and duration and bursti-

ness. We computed correlations of the log of these
data because of the large range and uneven distri-

bution. To compute the correlation between differ-

ent flow statistics, we use rank-based Kendall�s s
method, which is less sensitive to outliers and

non-normality than the standard Pearson estimate

[28]. As shown in Table 6, we find that size, rate

and burstiness are strongly correlated. In this sec-

tion, based on our data, we present some plausible
explanation for the reason of strong correlations

between flow size, rate and burstiness.

Note that one might expect that there is a stron-

ger correlation between size and duration than

what is shown in Table 6. Since small flows

account for more data points in our traces, one

possibility for the observed weak correlation be-

tween size and duration might be that our results
are bias toward small flows. To verify such a

hypothesis, we look at the correlation between size

and duration for large-size flows alone. However,

we do not find a strong correlation between size

and duration for large-size flows. One plausible

reason could be that, for large-size flows, users

might choose the size of their transfer based on

the link speed, as suggested by prior work [32].
For example, one might decide not to download

big files (or abort after a long wait) when browsing

the web via a slow modem link. Hence, most of

larger flows might tend to be seen on faster links.

As a result, a larger-size flow might not have a

longer duration if such a flow is sent over a faster

link.

6.1. High correlation between rate and size

Previous work [32] showed that there is a strong

correlation between flow rate and size. They

hypothesized that the observed strong correlation

is due to user behavior: users choose the size of

their transfer based on available bandwidth. In

this section, based on our data, we provide another
plausible explanation for the observed correlation.

We suspect that, while user behavior could have

some effect on large-size flows, the origin of the ob-



Table 7

Correlation between size and rate for different protocol, flow

sizes and duration

Types Correlation coefficient

Los Nettos NLANR

Size less than 10K 0.17 0.41

Size between 10K and 100K 0.13 0.47

Size greater than 100K 0.16 0.32

Duration greater than 1 s (ALL) 0.57 0.79

Duration greater than 5 s (ALL) 0.65 0.81

Duration greater than 30 s (ALL) 0.81 0.87

Duration greater than 1 s (TCP) 0.71 0.81

Duration greater than 5 s (TCP) 0.83 0.87

Duration greater than 30 s (TCP) 0.92 0.96

Duration greater than 1 s (UDP) 0.34 0.70

Duration greater than 5 s (UDP) 0.61 0.77

Duration greater than 30 s (UDP) 0.74 0.82
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Fig. 2. Distribution of flow size for flows with a duration

longer than 30 s in Los Nettos trace.
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served correlation might be better explained by

transport and application-level protocol mecha-

nisms for small- or medium-size flows.

To systematically investigate the cause of corre-

lation between flow size and rate, we first group

flows based on their protocols, size and duration,

as shown in Table 7.

As shown in Table 7, there is a strong correla-
tion between rate and size for flows longer than

30 s3 (the correlation coefficients are greater than

0.8 for both traces). We do not see similar results

for flows with a larger size (for example, the corre-

lation coefficient for flows with a size larger than

100K is only 0.16 for Los Nettos traces). However,

if the strong correlation between size and rate is

due to that users choose the file to transfer based
on the available bandwidth, as suggested by prior

work, we expect to see a strong correlation be-

tween size and rate for large-size flows as well.

After taking a closer look, surprisingly, we find

that most of the flows longer than 30 s actually

only have a medium or small size. As shown in

Fig. 2, 70% of such flows have a size of less than

10 kB and 90% of them are smaller than 60 kB.
3 As shown in the second row, the correlation between flow

size and rate becomes stronger as we increase the threshold

from 1 to 30 s.
While indicating that there is a strong correla-

tion between size and rate, Table 6, however, does

not provide enough information for understanding

the cause of such a correlation. To visually exam-
ine at what range of size and rate where this corre-

lation arises, we plot size against rate on a density

plot. Fig. 3 shows the density plots of TCP flows

for Los Nettos and NLANR traces. To generate

each graph, the area is divided into a 1000 · 1000

grid. We then place each of the millions of flows

from the traces into a grid cell, sum the number

of flows in that cell and map it to a gray-scale va-
lue, with cells from 0 to 8192 flows representing

white to pure black. The density plot therefore

highlights which combinations of size and rate

are most ‘‘popular’’. In other words, a darker

point on the plot indicates that there are more

flows with that particular combination of size

and rate.4

There are a few distinct features on both plots
of Fig. 3: several slanted bands on the right (re-

gions 2–5) and a few vertical lines on the left (re-

gion 6). The diagonal bands on the right indicate

that the rate of flows is proportionally increasing

to the size at a log scale (i.e. positively correlated).
4 Note that since there are more flows in Los Nettos traces

than in NLANR traces, for presentation purposes, we reduce

the number of flows required to represent the same gray-scale

by a factor of 8 for NLANR traces. In other words, for

NLANR traces, cells with from 0 to 1024 flows are represented

by white to pure black.



Fig. 3. Density plots of size and rate for TCP flows (at log–log

scale): (a) Los Nettos trace and (b) NLANR trace.
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The vertical lines suggest that these are flows with

the same size but different rates. Finally, there are

more and also darker points in region 1 of Fig. 3,
which indicates that there are more TCP flows fall

in this region (with sizes between 1 kB and 10 kB

and rates from 1K/s to 10K/s).

A closer look at the flows in each diagonal band

indicates that these flows have similar durations.

The reason that these flows have similar durations

can be explained by the protocol mechanism. Fig.

4 demonstrates a typical flow in region 2 of Fig.
3(a). While the actual transfer of a flow requires
Fig. 4. Retransmission tim
only a few hundred milliseconds, the timeout for

SYN retransmission stretches the flow duration

to about 3 s [3]. Flows in regions 3–5 of Fig. 3(a)

also have similar flow durations respectively.

These similar durations are due to different time-
out mechanisms. Specifically, most of the flows

in region 3 last about 15 s and are mainly due to

HTTP persistent connection timeout [11]. The

flows in region 4 last about 60 s and flows in region

5 last about 2 min. The durations of these flows are

mainly stretched out by the TCP TIME_WAIT de-

lay (2MSL wait). RFC 793 [23] specifies the MSL

as 2 min. However, common implementation val-
ues typically range from 30 s to 2 min [29]. In sum-

mary, each diagonal band (regions 2–5) consists of

a group of flows with similar flow durations but

varying amount of data. The spacing between dif-

ferent diagonal bands is due to variable flow dura-

tions which in turns are caused by different

protocol mechanisms.

Another distinct feature of the plots is the exis-
tence of vertical lines on the left (region 6) for both

Los Nettos and NLANR traces. These vertical

lines mainly consist of flows with only three or

four packets. They account for 8% of total flows

in NLANR traces, and 9% in Los Nettos traces.

After manually examining a large number of such

flows in both traces, we find that they mainly con-

sist of two types of flows.
The first type of flows, as shown in Fig. 5, con-

sist of a sequence of SYN retransmissions. We sus-

pect that these flows are either some particular

implementation of TCP (that stops retransmitting

after sending three SYN packets) or some kind of

port scanning. The second type of flows, as shown

in Fig. 6, only transmit SYN and FIN with no

data packets in between. We suspect that these
flows might be due to some kind of port scanning.

Finally, as shown in Fig. 7, more than 5% of flows

have durations less than a couple of seconds and
eout in a small flow.



Fig. 5. SYN retransmission in a small flow.

Fig. 6. TCP connection with no data.
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Fig. 7. Distribution of TCP flow duration of Los Nettos traffic.

Fig. 8. Density plots of size and rate for UDP flows: (a) Los

Nettos trace and (b) NLANR trace.
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account for the concentration of flows in region 1.

A detailed examination shows that these flows are

normal web traffic.

The density plot of NLANR traces, as shown in

Fig. 3(b), is similar to that of Los Nettos traces.
Note that we do not see a significant number of

flows with SYN retransmission (region 2 in Fig.

3(a)) in NLANR traces as in Los Nettos traces.

There is a strong correlation between flow rate

and size for UDP traffic as well, as shown in Table

7. We also look at the density plots of UDP traffic

for both Los Nettos and NLANR traces, as shown

in Fig. 8. The majority of UDP traffic is contrib-
uted by DNS flows (which account for 78% of

all UDP flows in Los Nettos traces and 81% in

NLANR traces). A common feature between

Fig. 8(a) and (b) is the existence of several

diagonal bands. Similar to the analysis for TCP

flows, we find that these bands are also due to

flows with similar durations and varying amount

of traffic.
The diagonal line on the bottom (region 1 on

both plots) consists of long-lived server-to-server

DNS flows that last across the entire duration of
our traces. The diagonal lines on the top of both

plots consist of flows with durations ranging from

1 to 9 s. These flows are mainly contributed

by DNS flows with repeated transmissions.



Fig. 9. DNS repeated query.

Fig. 10. Density plots of size and burstiness for TCP flows:

(a) Los Nettos trace and (b) NLANR trace.
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Consistent with prior work [31], such flows ac-

count for a significant percentage of DNS traffic

in our traces (52% in Los Nettos traces and 38%

in NLANR traces). Fig. 9 demonstrates one of

such flows. The duration of such flows is a

function of the number of retransmission and the

length of timeout. Since DNS retransmission
timeouts are typically some fixed values [17], the

durations of these flows resultingly concentrate

on certain lengths.

There are some vertical lines on the upper left-

hand side of the plot for Los Nettos traces (region

2 in Fig. 8(a)). A closer look shows that these small

flows mainly consist of probe packets of game traf-

fic. Finally, there are some dark dots on the bot-
tom of Los Nettos plot (region 3 in Fig. 8(a)). A

careful examination shows that these flows are

contributed by a number of extraordinarily busy

sources sending repeated ‘‘A?’’ queries. These

DNS flows account for about 4% of total DNS

queries in our traces. A similar observation of such

busy sources was also previously reported by

CAIDA [31].
The flows in region 2 (the vertical line) and

region 3 (the dark slanted line) of Fig. 8(b) mainly

consists of probe packets of Kazaa traffic. The

typical duration for flows in region 3 is about 9 s.
6.2. High correlation between burstiness and size

Table 6 shows that flow size and burstiness are
also highly correlated. In this section, using similar

analysis as described in Section 6.1, we show that

the correlation between size and burstiness can

also be explained by protocol reasons.

The density plots of size vs. burstiness for TCP

flows are shown in Fig. 10. A common feature in

Fig. 10 for both traces is the existence of diagonal

lines. Similar to the observation from previous sec-
tion, we find that each diagonal line consists of a

group of flows with similar duration.
Figs. 11 and 12 show two typical flows in the

darkest diagonal line at the center of Fig. 10(a) (re-

gion 1 on the plot). The corresponding time series
plots of both flows are shown in Fig. 13. The dura-

tions of both flows are stretched out by TCP

retransmission timeout to around 3 s. As a result,

the burstiness of the flow depends on the volume

of traffic it transmits. Flow A is burstier than flow

B because that flow A has a larger HTTP transfer.

(Specifically, flow A has a size of 1530 Bytes, a

duration of 3.04 s, a rate of 503 Bytes/s and a
burstiness of 2055 kB, while flow B has a size of

914 Bytes, a duration of 3.39 s, a rate of 267 By-



Fig. 11. Flow A.

Fig. 12. Flow B.
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Fig. 13. Bandwidth-time plots of flows A and B.

Table 8

Relation between elephant, tortoise, cheetah and porcupine

flows when defining heavy-hitters as the largest 1% of the flows
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tes/s and a burstiness of 950 kB.) Note that there

are a few vertical lines at the left-hand side of

Fig. 10(a) (region 2 on the plot). These vertical

lines are mainly due to SYN retransmissions and

probing packets as described previously in Section
6.1.

Similarly, the correlation between rate and

burstiness in Table 6 could also be explained by

the above reasoning. For brevity, we do not show

the corresponding plots here.

Expect Given

Elephant Tortoise Cheetah Porcupine

Elephant – 1% 0.5% 83%

Tortoise 19% – 0.003% 3%

Cheetah 9% 0.001% – 2%

Porcupine 22% 1% 9% –
7. Sensitivity of results

Our work does not focus on choosing the crite-

rion for defining elephant, tortoise, cheetah and
porcupine. Instead, given a fixed criterion, we focus

on the statistical properties of heavy-hitter flows in

different dimensions, namely size, duration, rate

and burstiness. However, to understand if different

choices of thresholds (as defined Section 2) would
affect our results, we investigate the effects from

using three different criteria in this section.

First, instead of using the thresholds defined in

Section 2, we define heavy-hitters traffic as the

largest 1% of all flows. After applying such a def-

inition to Los Nettos data, the resulting thresholds

are equivalent to the choices of x = 110, y = 23,

z = 368, m = 56742 (x, y, z, m are defined in Sec-
tion 2). The second criterion that we employ is to

apply the aest test (previously proposed by Crov-

ella and Taqqu [7]) to our data, and choose the

threshold as the cutoff point in the heavy-tailed

distribution (the scaling exponents a for size, dura-

tion, rate and burstiness are 1.2, 1.8, 1.3 and 1.5

respectively). The resulting thresholds are equiva-

lent to the choices of x = 138, y = 20, z = 121,



Table 9

Relation between elephant, tortoise, cheetah and porcupine

flows when defining heavy-hitters as flows beyond the cutoff

point in the heavy-tailed distribution

Expect Given

Elephant Tortoise Cheetah Porcupine

Elephant – 3% 2% 74%

Tortoise 19% – 0.006% 4%

Cheetah 8% 0.006% – 3%

Porcupine 20% 1% 5% –

Table 10

Relation between elephant, tortoise, cheetah and porcupine

flows when defining heavy-hitters as flows that consume 50% of

total traffic

Expect Given

Elephant Tortoise Cheetah Porcupine

Elephant – 2% 0.8% 59%

Tortoise 22% – 0.001% 3%

Cheetah 15% 0.01% – 9%

Porcupine 24% 2% 4% –
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m = 50111. Finally, we define heavy-hitters traffic

as the largest flows that together carry 50% or

more of the total bytes. The resulting thresholds

are equivalent to the choices of x = 145, y = 21,

z = 113, m = 51887. As shown in Tables 8–10,

although the numbers are slightly different, overall

the results are similar to Table 3.
8. Discussion

Modeling and simulating Internet traffic is diffi-

cult due to its scale, heterogeneity and dynamics

[12]. It is important to understand the causal root

of traffic characteristic so that one can determine

what is fundamental and what is just an artifact.
Knowledge of fundamental correlations of traffic

characteristics allows one to limit the number of

cases needed to be considered. Complementary

to previous studies that characterized Internet

flows based on different metrics (e.g. size, duration,

etc.), this paper emphasizes on understanding the

relationship between different characterizations of

flows in order to get a better insight of traffic
dynamics.
In this work, we show that some of traffic met-

rics are strong correlated (e.g. size and burstiness)

while the others are relatively independent of each

other (e.g. size and duration). Our results have

some important implications in protocol design
and network modeling/simulation.

As implied by the last row of Table 5, by paying

more attention to bursty flows, one could captures

most of high-rate and large-size traffic. Based on

this observation, it seems reasonable to explicitly

take burst traffic into account in protocol and rou-

ter design. The recent proposal of Optical Burst

Switching [24] is such an example. Additionally,
such an insight can be applied to reduce the com-

plexity of simulation. Instead of modeling and

simulating traffic in details, one can focus on bur-

sty traffic and still capture most of the traffic

dynamics required in a large simulation. Further-

more, one can utilize the burstiness of traffic as an-

other metric to identify elephant flows in addition

to the use of size and duration [21].
On the other hand, as discussed in Section 6.1,

using the duration of a flow as an indication of

the volume of traffic sent could be misleading in

some cases. Flow size and duration might need to

be treated as different and independent dimensions.

In this work, we study characteristics of heavy-

hitter flows in four different dimensions: size,

duration, rate and burstiness. However, based on
the root of traffic characteristics, one can still iden-

tify different classes of traffic within each individual

metric. For example, in Section 5 we show that long-

lived flows can be due to either transfer of large files

or the effect of application/user behavior. Instead of

treating them indiscriminately as one single class of

long-lived flows, it seems more reasonable to

separate them as different classes of traffic for
network modeling and traffic monitoring purposes.
9. Future work

In this work, we show that the durations of a

large number of small/medium flows are stretched

out by various protocol timeout mechanisms. The
cause of timeouts might be due to either applica-

tion/user behavior or network congestion. It is

important to characterize these timeouts and
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understand their prevalence for performance and

modeling purposes. For example, we observed a

significant number of packet retransmissions in

our traces. It would be interesting to understand

what fractions of them are due to network conges-
tion, software flaws [13], malicious attack, etc.

Some recent work [1] based on measurements from

NIMI [22] has shown that a significant number of

TCP retransmissions in their data are not caused

by congestion-induced packet losses.

Prior work [32] showed that the most frequent

cause for limiting the rate of a flow is network con-

gestion. Our data suggests that the origin of some
long-lived flows are likely due to application

behavior instead of download of big files. In addi-

tion, we confirm that most bursty traffic might be

due to transfer of large files over fast links. How-

ever, relatively little study has been done to under-

stand the cause of burstiness in Internet traffic.

The burstiness of a flow can be due to either appli-

cation/protocol behavior or network congestion.
For TCP traffic, one way to infer the occurrence

of queuing is to compare the observed burstiness

of the flow with its congestion window size. As fu-

ture work, we plan to study what fractions of burs-

tiness in Internet traffic are due to network

congestion.

In this study, due to time constraints, the results

of this paper are based on a limited set of traces.
We plan to collect more traces from other places,

particularly traces from backbone links of a large

ISP to further compare and validate our results.
10. Conclusion

Previous studies of Internet traffic have shown
that a small percentage of flows carry most of

the network traffic. It is important to understand

the characteristics of such flows for traffic moni-

toring and modeling purposes. Several prior stud-

ies have characterized such flows using different

definitions: elephant and mice, tortoise and drag-

onfly, and alpha and beta traffic. However, it has

not been clear how these different classifications
of flows relate to each other. In our work, using

data from different traffic sources, we study these

‘‘heavy-hitter’’ traffic in four different dimensions,
namely size, duration, rate and burstiness, and

examine how they are correlated. We first system-

atically characterize prior definitions for the prop-

erties of these heavy-hitter traffic. In our datasets,

we observe that a significant percentage of long-
lived flows are comprised of DNS traffic. Our data

suggests that the bursty traffic is likely due to the

transfer of big files over fast links, which is consis-

tent with the observation from previous work even

when we define bursty flows differently. We also

observe that there are strong correlations between

flow size, rate and burstiness. Additionally, we

show that using the duration of a flow as an indi-
cation of the volume of traffic sent could be mis-

leading in some cases. Flow size and duration

might need to be treated as different and indepen-

dent dimensions. Finally, we present a plausible

physical explanation for the observed correlations

between size, rate and burstiness.
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