
2550 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

A Compressibility-Based Clustering Algorithm for
Hierarchical Compressive Data Gathering

Kun-Chan Lan and Ming-Zhi Wei

Abstract— Data gathering in wireless sensor networks (WSNs)
is one of the major sources for power consumption. Compression
is often employed to reduce the number of packet transmissions
required for data gathering. However, conventional data com-
pression techniques can introduce heavy in-node computation,
and thus, the use of compressive sensing (CS) for WSN data
gathering has recently attracted growing attention. Among exist-
ing CS-based data gathering approaches, hierarchical compres-
sive data gathering (HCDG) methods currently offer the most
transmission-efficient architectures. When employing HCDG,
clustering algorithms can affect the number of data transmis-
sions. Most existing HCDG works use the random clustering
(RC) method as a clustering algorithm, which can produce
significant number of transmissions in some cases. In this paper,
we present a compressibility-based clustering algorithm (CBCA)
for HCDG. In CBCA, the network topology is first converted
into a logical chain, similar to the idea proposed in PEGASIS [1],
and then the spatial correlation of the cluster nodes’ readings
are employed for CS. We show that CBCA requires significantly
less data transmission than the RC method with a little recovery
accuracy loss. We also identify optimal parameters of CBCA
via mathematical analysis and validate them by simulation.
Finally, we used water level data collected from a real-world
flood inundation monitoring system to drive our simulation
experiments and showed the effectiveness of CBCA.

Index Terms— Wireless sensor network, data gathering,
compressive sensing, clustering algorithm.

I. INTRODUCTION

MOST wireless sensor networks (WSNs) are battery
powered. Hence, energy consumption constitutes a cru-

cial issue in relation to WSNs. Wireless transmission is a major
contributor to power consumption in every sensor node [2].
Data gathering serves as one of the main functions of sensor
networks, and it introduces considerable wireless transmission
overhead. For this reason, minimizing the amount of wireless
transmissions in data gathering is a direct way to reduce energy
consumption in a sensor network.

Raw Data Gathering (RDG) is the conventional methodol-
ogy that is used for data gathering [3]–[7] in sensor networks.
Each node transmits raw data to the sink over multi-hop with-
out compression. As shown in Figure 1, xi , i = 1, 2, . . . , n,
is the data sensed at each node. Node S1 transmits x1 to S2
and S2 transmits x2 and relayed x1 to S3, etc. By the end
of the route, Sn transmits all n data readings to the sink.

Manuscript received December 1, 2016; revised January 20, 2017; accepted
January 30, 2017. Date of publication February 14, 2017; date of current
version March 22, 2017. The associate editor coordinating the review of this
paper and approving it for publication was Dr. Roozbeh Jafari.

The authors are with the Computer Science and Information
Engineering, National Cheng Kung University, Tainan 70101, Taiwan
(e-mail: klan@csie.ncku.edu.tw; xtcnrs456@gmail.com).

Digital Object Identifier 10.1109/JSEN.2017.2669081

Fig. 1. Raw data gathering.

Fig. 2. The CS compression formula.

RDG typically involves O(n2) data transmission. As wireless
transmission is the major contributor to power consumption
in every sensor node, data compression is the obvious way to
reduce data transmission. However, conventional compression
techniques [8]–[10] generally require explicit data communi-
cation between sensors and often introduce significant in-node
computation and control overhead [11].

The Compressive Sensing (CS) [12]–[14] has been recently
proposed for data gathering in sensor networks [15]. The
data compression of CS is “light-weight” and can be applied
right after Analog-to-Digital Converter (ADC) at the sensor,
while the decompression is usually computation-intensive.
In the context of WSNs, the decompression of CS normally
performed at the sink node which is often a full-fledged
machine with good computing power. The basic ideas of CS
are as follow. Assuming that x = [x1, x2, . . . , xn] denote a set
of sensor reading from n nodes, as shown in Figure 2, if raw
data x is sparse [2], we can multiply a compression matrix
ϕ by x to obtain y which is theoretically has less number of
entries (i.e. M) than x’s (i.e. n) but include most information
of x (so that x can be recovered back from y at the sink node).

Compressive Data Gathering (CDG) [11] was the first
method proposed for applying CS theory for data aggregation
in a tree topology. The number of data transmissions using
CDG methods are generally close to O(Mn), where M is
the size of compressed data and M � n. However, for
nodes close to the leaf, the number of data transmissions
in CDG are actually more than that in the traditional RDG
(as discussed in Figure 5 later). To alleviate this problem,

1558-1748 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LAN AND WEI: CBCA FOR HCDG 2551

the Hybrid CS Aggregation (HCS) [16]–[18] methods were
proposed, in which nodes close to the leaf implement RDG
and the remaining nodes implement CDG. As a result, HCS
can reduce the number of transmissions to (hn). Here h is
a function of the percentage of leaf nodes in the network
and h ≤ M . Given that h can still be large for a large-
scale network, Hierarchical CDG (HCDG) [19], [20] was then
proposed by decomposing the network into several clusters
in order to have a bounded h. In every cluster, HCDG uses
a smaller compression matrix ϕi to replace the original ϕ.
HCDG can further reduce the number of transmissions to
O(Mi n), where Mi is a function of cluster size and generally
Mi ≤ E[h].

The number of transmissions in HCDG is a function of
the average compression ratio of the clusters; therefore, the
clustering algorithm can significantly affect the performance
of HCDG. Existing HCDG studies randomly choose the size
of the cluster and each cluster has the same size; here, we
refer to this approach as the Random Clustering (RC) method.
RC does not consider the compressibility of each cluster, and
thus the average compression ratio of each cluster could be
unbounded. In this paper, we propose a Compressibility-Based
Clustering Algorithm (CBCA). In CBCA, the network is first
converted into a logical chain, similar to the idea proposed in
PEGASIS [1], and then sensor nodes are grouped based on
the compressibility of their readings on top of this chain. For
this reason, the CBCA requires less number of transmissions
than the RC method. In our experiments, the recovery quality
levels at the sink node can maintain a Percentage Root-mean
squared Distortion (PRD) of less than 5% with an average
compression ratio around 40% when CBCA is used.

The remainder of this paper is structured as follows.
In section II, we discuss related works. We describe our
methodology in section III. The simulation experiment results
are shown in section IV. Finally, we conclude this paper
in section V. In Appendix, we show how we determine the
optimal CBCA parameters via mathematical analysis.

II. RELATED WORK

In this section, we first introduce the concept of sparsity and
compressive sensing (CS). We then describe the basic ideas of
CDG, HCS and HCDG.

A. Sparsity

Sparsity is a vital prerequisite for data compression, and
it expresses “compressibility” of a signal. Numerous natural
signals are compressible in the sense that they have con-
cise representations when expressed properly [12]. We gen-
erally consider that “a vector x ∈ R

n is K−sparse” if
∃ψi s an invetible matri x s.t ‖ψx‖0 ≤ K , or we can say
that “the sparsity of x is K .”. That is, most of the information
aboutxcan be preserved by K components in ψx . Note that
few real-world signals are truly sparse. Therefore, here we
use an alternative definition of sparsity [21] which considers
“a vector x ∈ R

n is K−sparse if |ψx | has K elements
greater than a sparse threshold ε, where ε ∼= 0”. Compressive
Sensing (CS) is a non-adaptive compression method that

Fig. 3. Compressive data gathering.

assumes the sparsity of the raw data. More specifically, in CS,
when a one-dimensional signal x ∈ Rn is K−sparse in ψ
and K � n, the following compression strategy [22]–[24] can
be realized (intuitively, the sparse threshold ε will affect the
compression ratio and recovery accuracy in CS).

Encoder : y = ϕx, ϕ ∈ R
M∗n

Decoder : min
∥
∥ẑ
∥
∥

0 s.t ϕψH ẑ = y

x̂ = ψH ẑ

B. Compressive Data Gathering

The Compressed Data Gathering (CDG) [11] was the first
method proposed for applying CS theories to data aggregation
in a sensor network, as shown in Figure 3. We let x =
[x1, x2, . . . , xn] denote sensor readings collected by nodes
and assume that vi = xiϕ:i (ϕ:i is the i th column of the
compression matrix ϕ in Figure 2). Here let’s define the Fi

as “fused-data of node Si ” which is the summation of vi and
all Si ’s children’s F . If Si is a leaf node, then Fi = vi . For
example, F3 = x1ϕ:1 + x2ϕ:2 + x3ϕ:3 in Figure 3.

The CDG method involves four steps.
1. Every node Si calculates its vi and Fi .
2. Si transmits Fi to its upstream parent. Not that, as

compared to traditional data gathering methods in which
a node only sends raw data (i.e. xi) , the transmission
size at the leaf node increases from 1-tuple to M-tuple
(here we assume that the size of each sensor reading
take up 1-tuple), as shown in Figure 4.

3. The parent node receives all its children’s Fand calculate
its own F and then forward to its upstream node.

4. Step 3 is repeated until the root node is reached and
then y = ∑n

k=1 xkϕ:kvk can be calculated, as shown
in Figure 4.

The root node will then use y and ϕ to reconstruct x̂ . The
transmission overhead of CDG is generally close to O(Mn).
One obvious drawback of this approach is that, for nodes close
to the leaf, they are required to send more than what they do
in the traditional RDG [3]–[7].

C. Hybrid CS Aggregation

Hybrid CS Aggregation (HCS) [11], [16], [17] was proposed
as an improvement of CDG, as shown in Figure 5. The
idea behind HCS is the “delayed-fusion” principle, in which
the node only uses CDG if the size of aggregated data is
larger than M . Otherwise, RDG is applied. The transmission
overhead of HCS is close to O (hn), where h ≤ M and h is
a function of M .

2552 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

Fig. 4. Applying CDG for a tree topology.

Fig. 5. Differences between CDG and HCS (assuming M = 5).

D. Hierarchical Compressive Data Gathering

Given that overhead of HCS can still be quite
significant for a large-scale network [19], Hierarchical
CDG (HCDG) [18], [19] was proposed. HCDG employs a
hierarchical architecture (depicted in Figure 6) by dividing a
network into several clusters. A smaller compression matrix
ϕi ∈ RMi ∗ni is used in each cluster to replace the original
ϕ (ni is the i th cluster size; Mi is a function of Ki which
is the sparsity of the i th cluster) used in HCS. Every cluster
head collects data via intra-cluster CDG and relays it toward
the sink. Based on HCDG, Ruitao Xie et al. proposed a
clustering method [18] in which sensor nodes are randomly
formed into clusters of a fixed size. Xi Xu et al. proposed a
multiple level gathering strategy [19]. At each level, nodes
of a fixed size are randomly grouped. These approaches,
however, did not consider properties of collected data in
a cluster. More specifically, if the collected sensor reading
set is not compressible, the intra-cluster CDG might not be
effective.

In this work, we propose a Compressibility-Based Cluster-
ing Algorithm (CBCA) for HCDG. In CBCA, the network
topology is first converted into a logical chain, similar to the
idea proposed in PEGASIS [1], and then a greedy clustering
algorithm is implemented on top of this chain to minimize
the average compression ratio (which is defined below) of all
clusters.

Fig. 6. Hierarchical Compressive Data Gathering (the dashed lines denote
multi- hop transmissions from cluster heads to the sink).

Fig. 7. (a) A chain topology (b) Leader node selection in PEGASIS.

PEGASIS is a RDG-based method which aims to increase
the life time of a sensor network. The main idea in PEGASIS
is for each node to receive from and transmit to close neigh-
bors and take turns being the leader for transmission to the
sink. This approach will distribute the energy load evenly
among the sensor nodes in the network. In PEGASIS, the
nodes will be first organized to form a chain, which can be
accomplished using a greedy algorithm starting from some
node. To construct the chain, PEGASIS starts with the furthest
node from the sink in order to make sure that nodes farther
from the sink have close neighbors, as in the greedy algorithm
the neighbor distances will increase gradually since nodes
already on the chain cannot be revisited, as the example shown
in Figure 7(a). For gathering data in each round, each node
receives data from one neighbor, fuses with its own data,
and transmits to the other neighbor on the chain. Nodes take
turns to become the leader for transmitting the aggregated
data to the sink. In other words, the leader in each round
of communication will be at a random position on the chain
as shown in Figure 7(b). Note that CBCA is HCDG-based
method which intuitively has less data transmission overhead
compared to a RDG-based approach like PEGASIS, as dis-
cussed in the previous section.

III. METHODOLOGY

In this section, we propose the Compressibility-Based Clus-
tering Algorithm (CBCA) for HCDG. The CBCA is a greedy
clustering algorithm that aims to minimize the average com-
pression ratio of all clusters. First, we determine whether a

LAN AND WEI: CBCA FOR HCDG 2553

set of nodes is compressible based on its compression ratio
and greedily select the sets that are ‘incompressible’ (defined
below). We then try to maximize the number of compressible
clusters based on the incompressible sets. After the clustering
stage, we determine transmission modes for each cluster
based on their compressibility levels. More specifically, if the
compression ratio of a cluster is lower than a threshold, CDG is
applied. Otherwise, RDG is applied. Since we first select
incompressible set of sensor nodes greedily, the remaining part
of the network is likely to contain mostly sparse data.

Definition 1 (Compression Ratio): The compression
ratio (CR) is also known as the measurement
rate [11], [16], [17]. The CR measures the efficiency of
compression and is defined as (i.e. a smaller CR has a better
compression ratio)

C R = compressed data si ze

raw data si ze

Definition 2 (Compressible Cluster): We define a compress-
ible cluster as:

suppose x (i) i s the reading set o f Cluster i

i f Cluster i i s compressible, then the C R of

x (i) i s lower than a threshold called ICT

To minimize the data transmission in each cluster, we select
a threshold (referred to ICT) to determine the transmission
mode of a cluster. The ICT is generally a function of the
number of nodes and the number of hops from a cluster head
to a sink. In the later section, we will discuss how to find a
good ICT.

A. Architecture

The system architecture is depicted in Figure 8. The
clustering algorithm is performed at the sink node. In the
initialization phase, the sink first collect some raw data from all
sensor nodes through RDG to run CBCA, and then broadcast
the results back to every node. Based on received CBCA
results, every cluster runs either CDG or RDG for sensor data
gathering. Given that the condition of the environment might
be changing over time, the sink will run CBCA periodically
(say, every t minutes, depending on the dynamics of the envi-
ronment to monitor, as shown in Figure 8). Table 1 summarizes
the notations used in remaining sections of this paper. Table
1I summarizes the notations used in the Appendix.

In this work, we make the following assumptions. First,
the network contains n sensor nodes and the information of
ϕ and ψ are stored at the sink. Second, as shown in previous
studies, the sensor data can be reconstructed with high proba-
bility when M = 3K ∼ 4K [11]. In this work, we assume the
sensor data is K-sparse and let M = 4K for a better recovery
quality. Third, we assume that the network can be converted
into a logical chain as the shown in the prior work [1], [25],
and every node Si in the network satisfies the following
conditions: ∀i = 1 ∼ n, Si and Si+1 are neighbors, here
Sn+1 is the sink. In reality, many sensor network can satisfy
this condition, such as chain and mesh networks. Forth, data
transmission is one of the major sources of power consumption

Fig. 8. System architecture.

TABLE I

NOTATIONS USED IN THE REMAINING SECTION

TABLE II

NOTATIONS USED IN THE APPENDIX

in a wireless sensor. Finally, due to the space limitation, we
do not consider the issues of packet loss in our experiments
and leave it as our future work.

2554 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

Fig. 9. CBCA flowchart.

Fig. 10. Model the network as a chain.

Fig. 11. Phase I: Identify the most incompressible set of nodes (ICWs).

B. Compressibility-Based Clustering Algorithm (CBCA)

Prior to running CBCA, we first model the network as a
logical chain based on nodes’ Euclidean distance [1], [25]
and every node is given an unique ID accordingly, as shown
in Figure 10. This pre-processing is used to introduce spatial
data correlations since adjacent nodes in the chain tend to be
nodes which are geographically close to each other [1], [25].
As shown in Figure 9, there are two phases in CBCA:

• Identify the most incompressible set of nodes (referred to
“Incompressible Windows” as described shortly) based on
a sliding window approach.

• Cluster formation based on the results from the phase I.
The details of phase I are as follows:

- Use a window (with a size of Z) to slide through the chain
(starting from the first node of the chain, and advancing
the window by one node at a time). This will create
(n − Z + 1) possible windows.

- Calculate the CR of each of these (n − Z + 1) windows
- Mark those windows which have a CR > ICT
- Among those marked windows, select a set of

non-overlapping windows which have the highest average
CR, and labeled these selected windows as Incompress-
ible Window (ICW), as shown in Figure 11.

The process of phase II is similar to phase I. We again
use a window (also with a size of Z) to slide through the
ICW-marked chain from phase I, as shown in Figure 12(a).
We refer this window as “Default Window (DW)” for the

Fig. 12. The relation between DW and ICW.

remaining of this paper. When sliding a DW over the
ICW-marked chain, three cases can happen:
Case 1: DW is completely disjoint with any ICW.
Case 2: DW is completely overlapped with a ICW.
Case 3: DW is partially overlapped with a ICW.

For case 1 and case 2, nodes in the DW will form a cluster,
as shown in Figure 12(a) and Figure 12(b). For case 3, let’s
first define DW1 = DW – (DW∩ICW) (e.g. nodes S5, S6, S7
in Figure 12(c)) and MC as the most recently formed cluster
(e.g. C1 in Figure 12(c)). Two conditions can be found in
case 3 based on the compression ratio of MC (i.e. CRMC) and
the compression ratio of DW1 (i.e. CRDW1).

- When CRMC > ICT: if CRDW1 < ICT, then nodes in
DW1 will form a cluster by themselves, and nodes in the
ICW that do not overlap with the DW also form a cluster,
as the C2 and C3 shown in Figure 13(a). Otherwise, nodes
in DW1 will merge with nodes in ICW to form a cluster,
as the C2 shown in Figure 13(c).

- When CRMC < ICT or when MC is an empty set
(i.e. no cluster has been formed yet): if CRDW1 < ICT,
then nodes in DW1 will merge with nodes in MC and
form a cluster, and nodes in the ICW that do not overlap
with the DW form a cluster, as the C1 and C2 shown in
Figure 13(b). Otherwise, nodes in DW1 will merge with
nodes in the overlapped ICW to form a cluster, as the
C2 shown in Figure 13(c).

A new DW will start right after the most recently formed
cluster on the chain and repeat the above process until the
end of the chain.

Finally, we determine the transmission mode of each cluster
by computing its CR. If the CR of a cluster is lower than the
ICT , CDG is used in the cluster for the data gathering task.
Otherwise, RDG is employed.

IV. EXPERIMENTS

In this section, we evaluate the performance of CBCA
through trace-driven simulations based on data obtained from
a real-world inundation monitoring sensor network.

LAN AND WEI: CBCA FOR HCDG 2555

Fig. 13. Cluster formation for case 3.

Fig. 14. (a) Structure and (b) physical appearance of the sensor node.

A. A Sensor Network Testbed for Inundation Monitoring

We implemented CBCA on a real-world sensor network
containing seventeen nodes (deployed in a linear topology)
used to collect water-level information for inundation monitor-
ing. The water-level sensor is composed of a rotating rheostat
and buoy, as shown in Figure 14. When flooding occurs, the
buoy rotates the rheostat, and the rheostat transmits different
levels of voltage to the sensor platform. We use the Taroko
sensor platform, a modification of the TelosB mote [26] that

Fig. 15. Testbed topology.

was originally designed at UC Berkley. Taroko is a pro-
grammable, low-power wireless sensor platform. The Taroko
platform uses a TI MSP430-F1611 microcontroller unit with
16-bit RISC [27]. The MSP430 has 48K bytes of flash memory
and 10K bytes of RAM that support serial communications
(e.g., UART, I2C, SPI, and Digital I/O). The Taroko platform
is also equipped with a CC2420 RF transceiver [28], which
is a low cost device for wireless communications in 2.4GHz
based on IEEE 802.15.4 [29]. The maximum radio distance
spans roughly 100 m. It also supports the USB interface and
uses an FTDI chip [30]. The Taroko platform can also use
the USB interface to connect to a computer for recharging,
program uploading and data collection. The sensor network
testbed is located in a suburb area of Kaohsiung city in Taiwan,
as shown in Figure 15. The nodes are distributed along the road
covering a length around 600 meters at a distance of 30-50m
apart. Many of the nodes are in a clear line-of-sight of their
neighbors. The sink/gateway node (circled in red) is located in
a residential house. The roads where the testbed is deployed
are about 5- 7m wide and surrounded mostly by farms.

The sink node is shown in Figure 16. We use a single
board computer as the gateway to upload the sensor data to
the 3G network. We implement the gateway using the Phid-
getSBC3 platform [31], which is a Single Board Computer
with an integrated PhidgetInterfaceKit 8/8/8 [32]. In its most
basic form, it can be viewed of as a Phidget that can be
connected using a network cable rather than a USB. The
PhidgetSBC3 also includes six high-speed ports that allow one
to use a normal USB Phidgetsover as a network connection.
This can extend the effective range of a Phidget from a
USB’s maximum range of 15 feet to any network range. The
PhidgetSBC3 serves as a simple interface for setting up and
running custom applications on-board. This allows the Phid-
getSBC3 to operate autonomously without the ongoing use of
a graphical interface or remote connection. For more advanced
users, the PhidgetSBC serves as an embedded computer that
runs Debian GNU/Linux. Phidget offers full shell access via
a built-in SSH server with access to the full Debian package
repository and with all standard command line tools expected
of a modern Linux system. An integrated PhidgetInterfaceKit
8/8/8 [32] allows one to connect devices to any of the eight
analog inputs, eight digital inputs and eight digital outputs.
It serves as a generic, convenient tool for interfacing a PC and

2556 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

Fig. 16. (a) Structure and (b) physical appearance of the sink node.

PhidgetSBC with a wide variety of devices, and it operates in
exactly the same way as an external PhidgetInterfaceKit.

Through mathematical analysis and extensive trace-driven
simulations (the simulation experiments are described in
the next section and the analytical proofs are shown in the
Appendix), we found that CBCA performs best when the
selected window size Z =

⌊
4

ravg

⌋

(here ravg is the average

compression ratio of all clusters) and ICT is set to Z2+Zn+Z
2Z2+Zn

.

Based on the insight from our analytics analysis, Z and ICT
in CBCA were set to 10 and 0.76 respectively on our 17-node
testbed. OMP [34] was chosen as the data recovery algorithm
and a Gaussian matrix [12] was used for the compression
matrix ϕ. We set the sparse threshold to 2cm after consulting
with some hydraulic experts.

We use PRD to evaluate the performance of CBCA on the
testbed, and it is defined as:

P RD =
∥
∥x − x̂

∥
∥

2

‖x‖2

where x and x̂ are the original and reconstructed sig-
nals, respectively, and ‖.‖ denotes the Euclidean norm.
We observed that CBCA can generally achieve a good balance
between the compression ratio and the recovery accuracy.
Specifically, when parameters of CBCA are optimized as
above, we can obtain a compression ratio of 40% with a

Fig. 17. Effect of different ψ .

recovery accuracy of more than 95% (i.e. a PRD of less
than 5%) on our 17-node testbed.

B. Simulation Experiments

The performance of CBCA can be affected by many para-
meters, such as the topology, choices of different ψ , Z ,
ICT, ϕ, and recovery algorithms. In this section, we evaluate
the effects of these parameters on the performance of CBCA.
Given that our system only contains seventeen nodes while, in
reality, a flooded area can cover hundreds of square kilometers.
We thus evaluate the performance of CBCA through trace-
driven simulations (trying to maintain the property of that
closer nodes have more similar sensor readings) using sensor
data obtained from the network testbed. The simulations are
implemented in MATLAB and we use the amount of data
transmission (in bytes) as the performance metric. We assumed
that four bytes are used to store each sensor reading for the
water-level. For simplicity and space limitation of this paper,
we do not consider packet loss in our simulations and leave
that as our future work.

We consider three different topologies in our simulations:
chain, grid (a node has at most 4 neighbors) and random
networks (nodes are uniformly distributed). The number of
nodes in all our simulations is 1024.

1) Comparisons of Different ψ for Networks of Different
Sizes: In HCDG, the data gathering overhead highly depends
on the selection of sparse representation. Generally speaking,
if the sparisty of a cluster i can satisfy

∑
Ki ≈ K , HCDG

is more likely to exhibit good performance (in terms of
the amount of data transmission). In this work, we com-
pare three most commonly-used sparse representations in
the literatures, including Difference Transform(DIF), Dis-
crete Fourier Transform(DFT) and Discrete Wavelet Trans-
form (DWT) [14], [20], [33], [34]. In this simulation, the
selected window size Z is set to

⌊
4

ravg

⌋

and ICT is set to
Z2+Zn+Z
2Z2+Zn

to optimize CBCA, and a Gaussian matrix [12] is

used for the compression matrix ϕ. As shown in Figure 17,
for different network sizes, transmission overhead when using
DIF [33] as the sparse representation is lower than that of the
other two approaches.

The average compression ratio ravg obtained in our simula-
tion experiments is similar to that obtained from our 17-node
testbed. This is not surprising given that the simulations are
driven based on the sensor data collected from the testbed.

LAN AND WEI: CBCA FOR HCDG 2557

Fig. 18. Raw and recovered data. The upper figure denotes raw data, and
the bottom figure denotes recovered data. Y-axis is the water level of flood
inundation.

Fig. 19. Effect of different Z values for CBCA.

Figure 18 shows a snapshot of original data and recon-
structed data.

2) Transmission Overhead for Different Z Values in CBCA:
The selected window size Z is also an important parameter
in the CBCA algorithm. Later in the Appendix, we will show
through a mathematical analysis that a HCDG network will
have the lowest data gathering overhead when Z is equal
to
⌊

4
ravg

⌋

. We verify this result in our simulation, as shown

in Figure 18. We set ICT to 0.3. DIF is used for the sparse
representation ψ and a Gaussian matrix [12] is used for the
compression matrix ϕ.

As suggested in Figure 19, the choice of Z could have differ-
ent effects for different topologies. For chain and grid topolo-
gies, the amount of data transmission generally increases as Z
increases when Z is greater than

⌊
4

ravg

⌋

. Such a correlation is
less obvious for random topology. In addition, Figure 19 shows
that a chain network generally requires more data transmission.
This is expected since less aggregation can be performed with
such a network topology.

3) Transmission Overhead for Different ICT Values in
CBCA: The incompressible threshold (ICT) is another impor-
tant parameter that affects the performance of CBCA. We also
show it mathematically in the Appendix that a HCDG network
will have the minimal data transmission for data gather-
ing when the ICT value is equal to Z2+Zn+Z

2Z2+Zn
, as shown

in Figure 20. Here Z is the selected window size in the CBCA
algorithm. In this experiment, Z is set to

⌊
4

ravg

⌋

. Again, DIF is
used for the sparse representation and a Gaussian matrix [12]
is used for the compression matrix ϕ.

Fig. 20. Data gathering overhead with CBCA for different ICT .

Fig. 21. Performance of CBCA and RC for networks of different sizes.

In addition, as observed from Figure 19, the amount of data
transmission for all three topologies show similar increasing
trends when the ICT value is greater than Z2+Zn+Z

2Z2+Zn
.

4) Compare CBCA and Random Clustering (RC) Methods
for Different Network Sizes: Next, we compare the perfor-
mance of CBCA against the RC method used by all the prior
work. In this simulation, DIF and a Gaussian matrix [12]
are used for the sparse representation ψ and the compression
matrix ϕ respectively. Z is set to

⌊
4

ravg

⌋

while ICT is set to
Z2+Zn+Z
2Z2+Zn

. As shown in Figure 21, the data gathering overhead

with CBCA is significantly lower than that of RC for all three
different topologies. In addition, we compare PEGSIS against
both CBCA and RC methods. The performance of PEGSIS is
close to CBCA in the chain topology when network sizes are
small; but worse than both CBCA and RC methods in grid
and random topologies, which is not surprising though since
PEGSIS is a RDG-based method which inherently has a higher
data transmission overhead (i.e. O(n2)) than a CDG-based
method like CBCA or RC. On the other hand, since the level
of aggregation is low in a chain topology (i.e. each node only
has one child (or downstream) node, RDG and CDG could
have similar performance in such a case.

For the same reason stated above, the chain topology
always has the worse performance for all three protocols while
grid and random topologies exhibit similar results, as shown
in Figure 22.

V. CONCLUSION AND DISCUSSION

In this work, we propose a novel clustering algorithm for
hierarchical compressive data gathering (HCDG) called CBCA
and we identify the best parameters for CBCA via mathemati-
cal analysis and simulation experiments. We show that CBCA
enables less data transmission than the Random Clustering
method previously used for HCDG. In our experiments, CBCA

2558 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

Fig. 22. Performance of different topology.

achieves a PRD of less than 5% (with a compression ratio
of 40%) when the best parameter setting of CBCA is used.

In our current study, we assume that the physical network
can always be modeled as a logical chain [1], [25] (i.e. ∀i =
1 ∼ n, Si and Si+1 are neighbors). While this is applicable
to many sensor networks such as chain or mesh networks, it
might fail for some particular types of networks. One possible
direction to improve this limitation is to adopt a similar multi-
level data gathering approach as in [19] by first dividing the
network into multiple groups which are CBCA-compatible
(meaning each of these subgroups can be modeled as a logical
chain), and then the data can be aggregated to the sink through
the roots of these subgroups. In addition, we do not consider
packet loss and other networking issues (such as routing and
packet re-ordering) which will be addressed in our future work.

APPENDIX

In this appendix, we mathematically derive the optimal
values for two important parameters used in CBCA, includ-
ing “Window Size” (Z) and the “Incompressible Threshold”
(ICT), and analytically compare the performance of CBCA
against that of Random Clustering (RC) method. The con-
cerned performance metric here is the number of total data
transmission from sensors to the sink.

A. Assumptions

In HCDG, data transmissions occur during intra-cluster data
gathering and forwarding from cluster heads to the sink. In this
analysis, we consider a chain topology which is generally
the worst case scenario in HCDG because it requires more
forwarding transmissions.

In order for HCDG to perform well, generally speaking,
the summation of sparsity for each cluster (

∑
Ki) should be

greater than or equal to K . In addition, a small
∑

Ki value
is desirable. In other words, a good representation basis (ψ)
for HCDG should satisfy

∑
Ki − K ≈ 0. In the following

analysis, we adopt Di f f erent Matri x (DI F) [33] as our
basis of representation the following analysis, as it can meet
the above-mentioned condition (i.e.

∑
Ki − K≈ 0).

DIF =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0
0 −1 1
0 0 −1

· · ·
0 0
0 0
0 0

...
. . .

...
0 0 0
0 0 0

· · · −1 1
0 −γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B. “Window Size (Z)” Selection

For simplicity, we assume that the size of each cluster is
equal to Z and therefore Z = n

D . When n is known, we can
determine once D is known. Thus, our goal is to find a D value
that can minimize the number of data transmission T n HC DG .
Here, we first model the number of data transmission using
RDG and CDG respectively, as a function of number of
nodes (n) and size of compressed data (M). Therefore, the
number of transmission in RDG: T nR DG(n) = n2+n

2 and
the number of transmission in CDG: T nC DG(M, n) = Mn.
We next model the number of data transmission in HCDG
(T nHC DG) as a function of D. Specifically, the number of
data transmission in HCDG

(T nHC DG)

=
∑

f or all cluster

[(intra − cluster transmission)

+ (f orwarding transmission f rom cluster head

to sink)]

=
D
∑

i=1

⎡

⎣Mi ni + Mi

⎛

⎝n −
i
∑

j=0

n j

⎞

⎠

⎤

⎦ ,n0= 0

=
D∑

i=1

⎛

⎝n −
i−1∑

j=0

n j

⎞

⎠ ∗ Mi , n0 = 0

For simplici ty, assuming n1 = n2 = . . . = nD = n

D
the number of data transmission in HCDG

(T nHC DG) =
D
∑

i=1

[

n − (i − 1)
n

D

]

∗ Mavg

=
D
∑

i=1

[
Dn − (i − 1) n

D

]

∗ Mavg

= n

(
Mavg

D

) D
∑

i=1

[D + 1 − i]

= n

(
Mavg

D

)(
D (D + 1)

2

)

=
(

D + 1

2

)

∗ n ∗ Mavg

∵ ravg = Mavg

n/D

T nHC DG =
(

D + 1

2

)

∗ n ∗
(n

D
∗ ravg

)

=
(

1 + 1

D

)(
n2

2
∗ ravg

)

(1)

Furthermore, f or each Clusteri ,

Mi = 4Ki i f Ki ≥ 1

⇒ Mi ≥ 4

⇒ Mavg ≥ 4

⇒
(n

D
∗ ravg

)

≥ 4

⇒ 1 ≤ D ≤ n

4
ravg (2)

LAN AND WEI: CBCA FOR HCDG 2559

Based on (1) and (2), we know that T nHC DG can be mini-
mized when D = n

4 ravg . Therefore, we select Z = n
D = n

4ravg
as the “Windows Size.”

C. “Incompressible Threshold (ICT)” Selection

To minimize the transmission of the cluster, we deter-
mine the transmission mode of the cluster based on its
compression ratio (CR) and ICT. Intuitively, the selec-
tion of ICT should enable that the number of transmis-
sions are the same using either RDG

(

denote T nRMode

)

or CDG
(

denote T nCMode

)

. In other words, our goal is to
f ind a compression ratio such that T nCMode = T n RMode .

Specifically,

T nCMode = (intra − cluster transmission)

+ (f orwarding transmission)

= T nC DG (Mi , Z)+ (Mi ∗ f)

= (Mi ∗ Z)+ (Mi ∗ f)

= Mi (Z + f)

= ri (Z
2 + Z f)

T nRMode = (intra − cluster transmission)

+ (f orwarding transmission)

= T nR DG (Z)+ (Z ∗ f)

= (1 + 2 + · · · + Z)+ (Z ∗ f)

= Z2 + Z

2
+ Z f

Here, the average number of hop is obtained by the equation
as shown at the top of next page.

As f = n
2 , in order to have

T nCMode = T nRMode

⇒ ri

(

Z2 + Zn

2

)

= Z2 + Zn + Z

2

⇒ ri = Z2 + Zn + Z

2Z2 + Zn
= ICT

D. Compare CBCA Against the RC Method

1) Assumption:

• For simplification, we assume that the size of each cluster
is Z .

• As noted above, when a good representation basis (ψ) is
selected, we can have

∑
Ki ≈ K , and in this analysis

we assume
∑

Ki = K .
• Finally, we assume the number of clusters D ≥ 2

2) Analysis: In probability theory, the binomial distribution
with parametersn and p is a discrete probability distribution
that models the number of successes in a sequence of n
independent yes/no experiments, each of which yields success
rates with a probability of p. In this analysis, we assume
that the size of cluster represents the number of experi-
ments and that the number of non-redundant readings in the
cluster denotes the number of successes. A non-redundant
reading denotes a zero element in a sparse representation,

and the number of non-redundant reading denotes the sparsity
level K .

assumingthedistributionofnon
− redundantreadingsisuniform
∵
∑

Ki = K
∴ the probability for a node to have

non-redundant reading = K

n�⇒ T he sparsi ty of an arbi trary cluster

Kc ∼ B

(

Z ,
K

n

)

∀i Pr is the probabili ty o f Modei = RDG

Pr = 1 − FKc

(
ICT

4
Z

)

,Here F is cumulative

distribution function

Let C : Kc ≥
⌊

ICT

4
Z

⌋

+ 1

to be T he ex pectation o f sparsi ty
f or a cluster in RDG Mode

μKc|C =
Z
∑

k=
⌊

I CT
4 Z

⌋

+1

k ∗ ℘Kc|C(k),

℘Kc|C(k) =
{ P(Kc = k)

Pr
, k ∈ C

0, k /∈ C

With the above information, now we can calculate the number
of transmissions using RC

T nRC = amount o f cluster
∗ [(intra − cluster transmission)
+ (f orwarding transmisstion f rom cluster
head to sink)]

= D ∗ [T nC DG
(

4μKc , Z
)+ (

4μKc ∗ f
)]

= D ∗ [(4μKc ∗ Z
)+ (

4μKc ∗ f
)]

= D

[

4

(
K

n
Z

)

(Z + f)

]

The number of transmissions using CBCA

T nC BC A

= amount o f C DG Mode cluster

∗ [(in − cluster transmission)

+ (f orwarding transmisstion f rom cluster head

to sink)] + amount o f RDG Mode cluster

∗ [(in − cluster transmission)+ (f orwarding

transmisstion f rom cluster head to sink)]

= (D − R) ∗
[

T nC DG

(

4
K − R ∗ μKc|C

n
, Z

)

+
(

4
K − R ∗ μKc|C

n
∗ f

)]

+ R ∗ [T n R DG (Z)+ (Z ∗ f)]

= (D − R)

(

4
K − R ∗ μKc|C

n
Z

)

(Z + f)

+ R

[(
Z2 + Z

2

)

+ (Z f)

]

∵ μKc|C ≥ Z

4

2560 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

f =
∑

f or all cluster number of hops f rom cluster head to sink

number of clusters

= 0 + n
D + 2 n

D + . . .+ (D − 1) n
D

D

=
n
D (0 + 1 + . . .+ (D − 1))

D

=
n
D

(
D(D−1)

2

)

D

=
n (D − 1)/

2
D

≈ n

2

T nC BC A

= (D − R)

(

4 ∗ K − R ∗ μKc|C
n

∗ Z

)

(Z + f)

+ R

[(
Z2 + Z

2

)

+ (Z f)

]

≤ (D − R)

(

4 ∗ K − R ∗ Z
4

n
∗ Z

)

(Z + f)

+ R

[(
Z2 + Z

2

)

+ (Z f)

]

= D

[(
K − RZ

n
Z

)

(Z + f)

]

− R

[((
K − RZ

n
Z

)

(Z + f)

)

−
(

Z2 + Z

2
+ Z f

)]

= T n
′
C BC A

Here we want to prove that T nC BC A≤ T n
′
C BC A ≤ T nRC

which will be true if T
′
C BC A − TRC ≤ 0

⇒ D

[((
K − RZ

n
Z

)

(Z + f)

)

−
(

4

(
K

n
Z

)

(Z + f)

)]

− R

[((
K − RZ

n
Z

)

(Z + f)

)

−
(

Z2 + Z

2
+ Z f

)]

≤ 0

Let

A = D

[(

4

(
K

n
Z

)

(Z + f)

)

−
((

K − RZ

n
Z

)

(Z + f)

)]

B = R

[(
Z2+Z

2
+Z f

)

−
((

K − RZ

n
Z

)

(Z + f)

)]

T n
′
C BC A ≤ T nRC

�⇒ −A + B ≤ 0

Next, let’s try to prove that B ≤ A

∵
∑

Ki = K and n1 = n2 = . . . = nD = n

D

ravg = r1 + r2 + . . .+ rD

D
=

M1
n1

+ M2
n2

+ . . .+ MD
nD

D

=
4(K1+K2+...+K D)

n/D
D

= 4K

n
= r

�⇒ Z = 4

ravg
= 4

r
= n

K
= n

D
�⇒ D = K

So now we can replace Z wi th n
D and D wi th K and simplify

A and B as follows:

A = D

[(

4

(
K

n
Z

)

(Z + f)

)

−
((

K − RZ

n
Z

)

(Z + f)

)]

= D (Z + f)

[(

4

(
K

n
Z

))

−
((

K − RZ

n
Z

))]

= D (Z + f)

(

4 −
n
Z − RZ

n
Z

)

= D (Z + f)

(

4 − n − RZ2

n

)

= D (Z + f)

(

3 − RZ2

n

)

= D (Z + f)

(

3 − R
(n

D

)2

n

)

=
(

3D2 − Rn

D

)

(Z + f)

B = R

[(
Z2 + Z

2
+ Z f

)

−
((

K − RZ

n
Z

)

(Z + f)

)]

= R

[(
Z2 + Z

2
+ Z f

)

−
((n

Z − RZ

n
Z

)

(Z + f)

)]

= R

[

Z

(
Z + 1

2
+ f

)

−
((

1 − R

n

(n

D

)2
)

(Z + f)

)]

≤ R

[

Z (Z + f)−
((

1 − R

n

(n

D

)2
)

(Z + f)

)]

= R (Z + f)

[

Z −
(

1 − Rn

D2

)]

= R (Z + f)

(

Z + 1 + RZ

D

)

= B1

LAN AND WEI: CBCA FOR HCDG 2561

Here we want to show B≤ B1 ≤ A

�⇒ R (Z + f)

(

Z + 1 + RZ

D

)

≤
(

3D2 − Rn

D

)

(Z + f)

�⇒ R

(

Z + 1 + RZ

D

)

≤
(

3D2 − Rn

D

)

�⇒ RDZ − RD + RZ ≤ 3D2 − Rn

�⇒ Rn − RD + RZ ≤ 3D2 − Rn

�⇒ RZ − RD ≤ 3D2

�⇒ R

(
n − D2

D

)

≤ 3D2

∵ R ≤ K
Z/

4
= 4K

Z
= 4D

Z

∴ R

(
n − D2

D

)

≤ 4D

Z

(
n − D2

D

)

≤ 3D2

So now if we can show 4D
Z

(
n−D2

D

)

≤ 3D2 then we can prove
B ≤ A

4D

Z

(
n − D2

D

)

= 4
n/

D

(

n − D2
)

= 4D − 4D2

n

(n

Z

)

= 4D

(

1 − D

Z

)

case 1 : D ≥ Z �⇒ 4D

(

1 − D

Z

)

≤ 0 < 3D2

case 2 : D < Z �⇒ 4D

(

1 − D

Z

)

= α ∗ 4Dα ∈ [0, 1)

�⇒ 4αD < 4D ≤ 3D2i f D ≥ 2

�⇒ 4D

(

1 − D

Z

)

≤ 3D2

REFERENCES

[1] S. Lindsey and C. S. Raghavendra, “PEGASIS: Power-efficient gathering
in sensor information systems,” in Proc. Int. Conf. Commun. (ICC),
Bejing, China, 2002, vol. 3, pp. 1125–1130.

[2] R. Jurdak, A. G. Ruzzelli, and G. M. P. O’Hare, “Radio sleep mode
optimization in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 9, no. 7, pp. 955–968, Jul. 2010.

[3] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. 7th ACM Conf. Embedded Netw. Sensor Syst.
(SenSys), New York, NY, USA, 2009, pp. 1–14.

[4] R. Shah and J. Rabaey, “Energy aware routing for low energy ad
hoc sensor networks,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Orlando, FL, USA, Mar. 2002, pp. 350–355.

[5] F. Ye, A. Chen, S. Lu, and L. Zhang, “A scalable solution to minimum
cost forwarding in large sensor networks,” in Proc. Int. Conf. Comput.
Commun. Netw. (ICCCN), Dallas, TX, USA, Oct. 2001, pp. 304–309.

[6] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data
dissemination model for large-scale wireless sensor networks,” in Proc.
8th ACM Mobicom, Atlanta, GA, USA, Sep. 2002, pp. 148–159.

[7] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” in Proc. IEEE
Int. Conf. Netw. (NETWORKS), Atlanta, GA, USA, Aug. 2002, pp. 1–9.

[8] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer,
“Network correlated data gathering with explicit communication: NP-
completeness and algorithms,” IEEE/ACM Trans. Netw., vol. 14, no. 1,
pp. 41–54, Feb. 2006.

[9] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, “Energy-
efficient data representation and routing for wireless sensor networks
based on a distributed wavelet compression algorithm,” in Proc. Int.
Conf. Inf. Process. Sensor Netw. (IPSN), Nashvile, TN, USA, Sep. 2006,
pp. 309–316.

[10] J. Acimovic, B. Beferull-Lozano, and R. Cristescu, “Adaptive distributed
algorithms for power-efficient data gathering in sensor networks,” in
Proc. Int. Conf. Wireless Netw., Commun. Mobile Comput. (WiCom),
ShenZhen, China, Jun. 2005, pp. 946–951.

[11] C. Luo, F. Wu, J. Sun, and C.-W. Chen, “Compressive data gathering
for large-scale wireless sensor networks,” in Proc. 15th ACM MobiCom,
Beijing, China, 2009, pp. 145–156.

[12] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30,
Mar. 2008.

[13] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[14] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.,
vol. 24, no. 4, pp. 118–121, Jul. 2007.

[15] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[16] L. Xiang, J. Luo, and A. Vasilakos, “Compressed data aggre-
gation for energy efficient wireless sensor networks,” in Proc.
8th IEEE SECON, Salt Lake City, Utah, USA, Apr. 2011,
pp. 46–54.

[17] J. Luo, L. Xiang, and C. Rosenberg, “Does compressed sens-
ing improve the throughput of wireless sensor networks?” in
Proc. IEEE Int. Conf. Commun. (ICC), Kyoto, Japan, Apr. 2010,
pp. 1–6.

[18] R. Xie and X. Jia, “Transmission-efficient clustering method for wireless
sensor networks using compressive sensing,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 806–815, Mar. 2014.

[19] X. Xu, R. Ansari, and A. Khokhar, “Power-efficient hierarchical
data aggregation using compressive sensing in WSNs,” in Proc.
IEEE Int. Conf. Commun. (ICC), Budapest, Hungary, Sep. 2013,
pp. 1769–1773.

[20] R. Chartrand, “Fast algorithms for nonconvex compressive sens-
ing: MRI reconstruction from very few data,” in Proc. IEEE
Int. Symp. Biomed. Imag. (ISBI), Boston, MA, USA, Sep. 2009,
pp. 262–265.

[21] M. Davenport, “Random observations on random obser-
vations: Sparse signal acquisition and processing,” Ph.D.
dissertation, Dept. Elect. Comput. Eng., Rice Univ.,
Houston, TX, USA, Aug. 2010.

[22] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans. Inf.
Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006.

[23] E. J. Candès and T. Tao, “Decoding by linear programming,”
IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215,
Dec. 2005.

[24] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach
for overcomplete sparse decomposition based on smoothed �0

norm,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–301,
Jan. 2009.

[25] D. Xie, Q. Zhou, J. Liu, B. Li, and X. Yuan, “A chain-based data
gathering protocol under compressive sensing framework for wireless
sensor networks,” in Proc. 5th IEEE Int. Conf. Comput. Inf. Sci. (ICCIS),
Apr. 2013, pp. 1479–1482.

[26] TelosB, accessed on Feb. 6, 2015. [Online]. Available:
http://www.willow.co.uk/html/telosb_mote_platform.html

[27] MSP430 F1611, accessed on Feb. 6, 2015. [Online]. Available:
http://focus.ti.com/docs/prod/folders/print/msp430f1611.html

[28] CC2420, accessed on Feb. 6, 2015. [Online]. Available:
http://focus.ti.com/docs/prod/folders/print/cc2420.html

[29] 802.15.4, accessed on Feb. 6, 2015. [Online]. Available:
http://www.ieee802.org/15/pub/TG4.html

[30] FTDI, accessed on Feb. 6, 2015. [Online]. Available:
http://www.ftdichip.com/Documents/DataSheets/ds232b18.pdf

[31] PhidgetSBC3, accessed on Feb. 6, 2015. [Online]. Available:
http://www.phidgets.com/docs/1073_User_Guide

[32] PhidgetInterfaceKit 8/8/8, accessed on Feb. 6, 2015. [Online]. Available:
http://www.phidgets.com/docs/1018_User_Guide

[33] X. Wu and M. Liu, “In-situ soil moisture sensing: measurement schedul-
ing and estimation using compressive sensing,” in Proc. 11th Int. Conf.
Inf. Process. Sensor Netw. (IPSN), New York, NY, USA, 2012, pp. 1–12.

2562 IEEE SENSORS JOURNAL, VOL. 17, NO. 8, APRIL 15, 2017

[34] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed sensing
for energy-efficient wireless telemonitoring of non-invasive fetal ECG
via block sparse Bayesian learning,” IEEE Trans. Biomed. Eng., vol. 60,
no. 2, pp. 300–308, Feb. 2013.

[35] R. Chartrand and V. Staneva, “Restricted isometry properties and
nonconvex compressive sensing,” Inverse Problem, vol. 24, no. 35020,
pp. 1–14, 2008.

[36] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[37] J. Romberg, “Compressive sensing by random convolution,” SIAM J.
Imag. Sci., vol. 2, no. 4, pp. 1098–1128, 2009.

[38] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Complex-valued
sparse representation based on smoothed �0-norm,” in Proc. Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), Las Vegas, NV, USA,
Sep. 2008, pp. 3881–3884.

[39] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach
for overcomplete sparse decomposition based on smoothed norm,”
IEEE Trans. Signal Process., vol. 57, no. 1, pp. 289–301,
Sep. 2009.

[40] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier
for basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2,
pp. 890–912, 2008.

[41] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, Sep. 2007.

[42] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal
matching pursuit: Recursive function approximation with applica-
tions to wavelet decomposition,” in Proc. 27th Annu. Asilomar
Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Sep. 1993,
pp. 40–44.

Kun-Chan Lan received the master’s degree in
computer science from the State University of
New York, Stony Brook, NY, USA, in 1997,
and the Ph.D. degree in computer science from
the University of Southern California, Los Ange-
les, CA, USA, in 2004. From 1998 to 2004, he
joined the ISI’s Computer Networks Division, as a
Graduate Research Assistant. During this period, he
maintained and contributed codes to the popular
network simulation software ns-2. From 2004 to
2007, he joined the Network and Pervasive Comput-

ing Program at National ICT Australia, Sydney, Australia, as a Researcher.
He is currently an Associate Professor with the Department of Computer
Science and Information Engineering, National Cheng Kung University,
Tainan, Taiwan. His research interests include intelligent transport system,
sensor network, and pervasive healthcare.

Ming-Zhi Wei was born in Tainan, Taiwan.
He received the M.S. degree in computer science and
information engineering from National Cheng Kung
University. He has been with Mstar semiconductor
since 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

